Asymmetric Synthesis of (+)-Monomorine I by way of a Diastereoselective Reaction of 1,3-Oxazolidine with a Grignard Reagent

Kimio Higashiyama, Keiji Nakahata and Hiroshi Takahashi
Faculty of Pharmaceutical Science, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

The indolizidine alkaloid, $(+)$-monomorine 1 1, has been prepared in an asymmetric synthesis employing the highly diastereoselective reaction of a 1.3-oxazolidine with a Grignard reagent.

Chiral 1,3-oxazolidines, readily synthesized by condensing (S) or (R)- N-alkyl-2-hydroxyethylamines such as (S)- N-alkylvalinol or (R) - N-alkylphenylglycinol with carbaldehydes, ${ }^{1}$ react with various organometallic reagents in a highly diastereoselective manner, ultimately providing a route for generating chiral amines in high chemical and optical yields. ${ }^{2}$ We have already reported the application of such reactions to the synthesis of two piperidine alkaloids, $(R)-(-)$-coniine and $(2 R, 6 S)$-(+)-dihydropinidine. ${ }^{3}$

We have now extended this work, with the enantioselective total synthesis of $(+)$-monomorine I 1, by a diastereoselective reaction of a 1,3 -oxazolidine derived from (R)-phenylglycinol with a Grignard reagent. (+)-Monomorine I 1 was earlier isolated from the tropical Pharoah's ant Monomorium pharaonis ${ }^{4}$ as a major component having trail-following activity. ${ }^{5}$

Results and Discussion

The key intermediate in the synthesis of the title alkaloid, the starting chiral 1,3-oxazolidine, was prepared as follows. Methyl 4,4-(ethylenedioxy)octa-2,7-dienoate 3, readily available from methyl levulinate 2 by a known procedure, ${ }^{6}$ was converted into the aldehyde $6(57 \%$ overall yield) by the sequence: catalytic hydrogenation, reduction with lithium aluminium hydride and oxidation with pyridinium chlorochromate (PCC). Condensation of 6 with N-benzylphenylglycinol 7 in dichloromethane in the presence of anhydrous magnesium sulfate gave a quantitative yield of the desired 1,3 -oxazolidine 8 . Although the ${ }^{1} \mathrm{H}$ NMR results for this product showed that it was a thermodynamic mixture ${ }^{7}$ as a result of the asymmetric centre at the 2 -position, since the minor component was $<7 \%$, the oxazolidine was used for the subsequent reaction without purification (see Scheme 1).

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, room temp., $23 \mathrm{~h}(91 \%)$; ii, $\mathrm{LiAlH}_{4}, \mathrm{THF}$, room temp., $1 \mathrm{~h}(91 \%)$; iii, PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., $4 \mathrm{~h}\left(67 \%\right.$); iv, N-benzylphenylglycinol $7, \mathrm{MgSO}_{4}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., $6 \mathrm{~h}(89 \%)$

Scheme 2 Reagents and conditions: i, $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{MgBr}$, THF, $15^{\circ} \mathrm{C}$ then room temp., $72 \mathrm{~h}(73 \%)$; ii, $\mathrm{O}_{2}, \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, \mathrm{CuCl}_{2}$, MeOH , room temp., $2 \mathrm{~h}\left(10 \mathrm{a}, 3 \% ; 10 \mathrm{~b}, 75 \%\right.$); iii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{MeOH}-3 \% \mathrm{HCl}$, room temp., $96 \mathrm{~h}(1,78 \% ; 11,8 \%)$

The reaction of 8 with pent-4-enylmagnesium bromide in tetrahydrofuran at $-15^{\circ} \mathrm{C}$ furnished the alcohol $9(73 \%)$ as an inseparable diastereoisomeric mixture in a ratio of 91.5:8.5. This, when subjected to the Wacker procedure, afforded a 4:96 mixture of the methyl ketones 10a and 10b (78% total yield). After separation of the two isomers by silica gel column chromatography, 10b was submitted to catalytic hydrogenation $(\mathrm{Pd} / \mathrm{C})$ to provide (+)-monomorine I $1(78 \%$) along with its C-3 epimer (+)-indolizidine 195B 11 (8%) (see Scheme 2). The spectroscopic data and the specific optical rotation of synthetic $(+)-1$ were identical with those reported. ${ }^{8}$

Experimental

General Methods.-M.p.s were measured with a YanagimotoMicro Melting Point apparatus and are uncorrected. IR spectra were recorded on a 215 Hitachi Grating I.R. spectro-
photometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a JEOL PMX 270 instrument, and chemical sifts are reported in ppm on the δ scale from internal tetramethylsilane. Mass spectra were measured with a JEOL JMS D-300 spectrometer by using the chemical ionization (CI) (isobutane) methods. Optical rotation were taken with a JASCO-DIP-370 polarimeter.

Methyl 4,4-Ethylenedioxyoctanoate 4.-A solution of compound 3 ($1.0 \mathrm{~g}, 4.71 \mathrm{mmol}$) in methanol ($30 \mathrm{~cm}^{3}$) was hydrogenated over 10% palladium on carbon (100 mg) at atmospheric pressure for 23 h . The catalyst was filtered off and washed with methanol and the combined filtrate and washings were evaporated under reduced pressure. The residual oil was distilled to afford the ester $4(0.93 \mathrm{~g}, 91 \%)$ as a colourless oil, b.p. $90^{\circ} \mathrm{C}$ at 3.0 mmHg (Found: C, $61.0 ; \mathrm{H}, 9.5$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 61.09 ; \mathrm{H}, 9.32 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2940(\mathrm{CH})$ and $1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right)$, 1.26-1.33 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.56-1.62[2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 1.99\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.37$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $3.93(4 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; m / z\left(\mathrm{CI}\right.$, isobutane) $217\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and 157 $\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.

4,4-Ethylenedioxyoctanol 5.-To a suspension of lithium aluminium hydride ($0.26 \mathrm{~g}, 6.58 \mathrm{mmol}$) in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature was added dropwise a solution of the ester $4(1.0 \mathrm{~g}, 4.62 \mathrm{mmol})$ in THF ($20 \mathrm{~cm}^{3}$) over a 20 min period. The reaction mixture was stirred for 1 h after which the excess of hydride was decomposed by the slow addition of water $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was filtered through a little Celite. Evaporation of the filtrate gave a colourless oil, which was distilled to give the alcohol $5(0.73 \mathrm{~g}, 91 \%)$ as a colourless oil, b.p. $96^{\circ} \mathrm{C}(0.5 \mathrm{mmHg}) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $2940(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right)$, $1.30-1.76\left[10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}\right], 2.34(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH})$, $3.64\left(2 \mathrm{H}, \mathrm{t}, J 6.1, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $3.95(4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$); $m / z\left(\mathrm{CI}\right.$, isobutane) $189\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and 157 $\left(\mathrm{M}^{+}-\mathrm{OH}\right)$.

4,4-Ethylenedioxyoctanal 6.-To a solution of PCC (1.00 g , $9.23 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ at room temperature was added dropwise a solution of the alcohol $5(1.16 \mathrm{~g}, 6.16 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ over a 20 min period. After being stirred for 4 h at room temperature, the reaction mixture was diluted with ether ($100 \mathrm{~cm}^{3}$), and filtered through a little Celite. Evaporation of the filtrate gave a brown oil, which was purified by distillation to give the aldehyde $6(0.77 \mathrm{~g}, 67 \%)$ as a colourless oil, b.p. $80^{\circ} \mathrm{C}$ at 1.0 mmHg (Found: C, 64.2; H, 9.9. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$: C, $64.49 ; \mathrm{H}, 9.74 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2940(\mathrm{CH})$ and $1715(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{t}, J 6.7$, $\left.\mathrm{CH}_{3}\right), 1.25-1.39\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}\right]$, 1.52-1.69 [$2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 2.30\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right), 2.44$ ($2 \mathrm{H}, \mathrm{dt}, J 6.7$ and $1.8, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), $3.91(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $9.70(1 \mathrm{H}, \mathrm{t}, J 1.8, \mathrm{CHO}) ; m / z(\mathrm{CI}$, isobutane) $187\left(\mathbf{M}^{+}+\mathrm{H}\right)$.
(2R,4R)-3-Benzyl-2-(3,3-ethylenedioxyheptyl)-4-phenyl-1,3oxazolidine 8.-To a solution of N -benzylphenylglycinol 7 (0.77 $\mathrm{g}, 3.38 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ in the presence of anhydrous $\mathrm{MgSO}_{4}(5.0 \mathrm{~g})$ was added dropwise a solution of the aldehyde $6(0.70 \mathrm{~g}, 3.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ over a 10 min period at room temperature. After the reaction mixture had been stirred for 6 h it was filtered through a little Celite and the filtrate concentrated under reduced pressure. The residue was crystallized to afford the oxazolidine $8(1.2 \mathrm{~g}, 89 \%)$ as colourless prisms, m.p. $56^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}^{25}-30.60$ (c 1.05, CHCl_{3}) (Found: C, 76.1; H, 8.5; N, 3.3. Calc. for
$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{3}: \mathrm{C}, 75.91 ; \mathrm{H}, 8.41 ; \mathrm{N}, 3.54 \%$); $\nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2950$ (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ major component; $0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 6.7, $\left.\mathbf{C H}_{3}\right), 1.21-1.34\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 1.36-1.51[4 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right], 1.53-1.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.49(1 \mathrm{H}, \mathrm{d}, J 14.0$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.67\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9, \mathrm{PhCHCH}_{2} \mathrm{O}\right), 3.75-3.92(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}, \mathrm{PhCHCH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, $\mathrm{PhCHCH}_{2} \mathrm{O}$), 4.37 ($1 \mathrm{H}, \mathrm{dd}, J 3.1$ and 5.5, NCHO), $7.15-7.41$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; minor component; 4.61-4.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHO}$); $\mathrm{m} / \mathrm{z}\left(\mathrm{CI}\right.$, isobutane) $369\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

6-[N-Benzyl-N-(2-hydroxy-1-phenylethyl)amino]tridec-1-en-9-one Ethylene Acetal 9.-To a stirred solution of pent-4enylmagnesium bromide, prepared from pent-4-enyl bromide $(0.57 \mathrm{~g}, 3.82 \mathrm{mmol})$ and $\mathrm{Mg}(0.1 \mathrm{~g}, 4.11 \mathrm{mmol})$, in dry THF (10 cm^{3}) was added dropwise at $0^{\circ} \mathrm{C}$ a solution of the oxazolidine 8 $(0.50 \mathrm{~g}, 1.26 \mathrm{mmol})$ in dry THF ($10 \mathrm{~cm}^{3}$) under nitrogen over a 1 h period. After the reaction mixture had been stirred at room temperature for 72 h it was quenched with water $\left(1 \mathrm{~cm}^{3}\right)$ and filtered through a little Celite. The filtrate was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a pale yellow oil which was subjected to column chromatography on silica gel with hexane-ether (2:1) to give a diastereoisomeric mixture ($91.5: 8.5$ as determined by ${ }^{1} \mathrm{H}$ NMR) of $9(0.43 \mathrm{~g}, 73 \%)$ as a colourless oil (Found: C, 77.1; H, 9.3; $\mathrm{N}, 3.0$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{NO}_{3}: \mathrm{C}, 77.38 ; \mathrm{H}$, $9.31 ; \mathrm{N}, 3.01 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3540(\mathrm{OH}), 2945(\mathrm{CH})$ and 1640 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (major component) $0.87(3 \mathrm{H}, \mathrm{t}$, $\left.J 6.7, \mathrm{CH}_{3}\right), 0.93-1.75\left[14 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{7}\right], 1.85-2.03(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.56-2.59(1 \mathrm{H}, \mathrm{m}$, CHN), 3.44-3.96 ($9 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{~N}, \quad \mathrm{PhCHCH} \mathrm{H}_{2} \mathrm{OH}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.82-5.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.72-5.89(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$) and 7.25-7.39 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); (minor component) $5.52-5.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right) ; m / z(\mathrm{CI}$, isobutane) $466\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
(6S,1'R)-6-[N-Benzyl-N-(2-hydroxy-1-phenylethyl)amino $]$ -tridecane-2,9-dione 10.-Oxygen gas was bubbled into a stirred mixture of compound $9(807 \mathrm{mg}, 1.73 \mathrm{mmol}),(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$ $(200 \mathrm{mg}, 0.78 \mathrm{mmol})$ and $\mathrm{CuCl}_{2}(300 \mathrm{mg}, 2.23 \mathrm{mmol})$ in methanol $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature for 2 h . The catalyst was filtered off and the catalyst was washed with methanol and the combined filtrates were evaporated under reduced pressure. The resulting residue was dissolved in 10% aqueous ammonium hydroxide (20 cm^{3}) and extracted with benzene ($3 \times 20 \mathrm{~cm}^{3}$) and the combined extracts were washed with brine ($20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a pale brown viscous oil. This was subjected to column chromatography on silica gel with hexane-ether ($2: 1$). The first fractions gave the minor ketone $\mathbf{1 0 a}(23 \mathrm{mg}, 3 \%)$ as a colourless gum; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3480(\mathrm{OH}), 2925(\mathrm{CH})$ and 1700 $(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.66-0.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.81-1.00$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.92\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right), 1.12-1.40[3 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right], 1.41-1.81\left[5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.06$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right), 2.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.30-2.69(5 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{2} \mathrm{CO}, \mathrm{CHN}$), $3.47-3.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH}_{2} \mathrm{OH}\right), 3.55$ ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.76-3.93$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{~N}$, $\mathrm{PhCHCH}_{2} \mathrm{OH}$) and 7.24-7.41 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z(\mathrm{CI}$, isobutane) $438\left(\mathrm{M}^{+}+\mathrm{H}\right)$. The second fractions gave the major ketone $10 \mathrm{~b}\left(571 \mathrm{mg}, 75 \%\right.$) as a colourless gum, $[\alpha]_{\mathrm{D}}^{25}-34.40$ (c 1.02, EtOH) (Found: C, 76.7; H, 9.1; N, 3.2. Calc. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{3}: \mathrm{C}, 76.85 ; \mathrm{H}, 8.98 ; \mathrm{N}, 3.20 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3450$ $(\mathrm{OH}), 2925(\mathrm{CH})$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.88$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7, \mathrm{CH}_{3}\right), 1.13-1.32\left[5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.35-1.59[4$ $\left.\mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 1.72-1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.04-2.11(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.15\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CO}\right)$, $2.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.35\left(2 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{CO}\right), 2.51-2.63$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 3.57-3.61 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH} 2 \mathrm{OH}$), 3.64 (1 $\mathrm{H}, \mathrm{d}, J 14.0, \mathrm{PhCH}_{2} \mathrm{~N}$), $3.92\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.84$ $3.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH}_{2} \mathrm{OH}\right.$), $7.26-7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z$ (CI, isobutane) $438\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
(+)-Monomorine I 1 and (+)-Indolizidine 195B 11.-A solution of the ketone $\mathbf{1 0 b}(761 \mathrm{mg}, 1.74 \mathrm{mmol}$) in methanol (20 cm^{3}) and 3% aqueous $\mathrm{HCl}\left(4 \mathrm{~cm}^{3}\right)$ was hydrogenated over 10% palladium on carbon (80 mg) under $4.0 \mathrm{~kg} \mathrm{~cm}^{-2}$ of hydrogen for 96 h at room temperature. The reaction mixture was then filtered through a little Celite and the filtrate was evaporated under reduced pressure to give a residue. This was dissolved in 10% aqueous $\mathrm{KOH}\left(30 \mathrm{~cm}^{3}\right)$ and extracted with ether (3×10 $\left.\mathrm{cm}^{3}\right)$. The combined extracts were washed with brine ($10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated at $<30^{\circ} \mathrm{C}$ at 20 mmHg to give a pale yellow oil, which was subjected to column chromatography on aluminium oxide with hexane-ether ($9: 1$) as eluent. The first fractions gave (+)-monomorine I $1(313 \mathrm{mg}$, 78%) as pale yellow oil, $[\alpha]_{\mathrm{D}}^{25}+35.1$ (c 1.33 , hexane) $\left\{\right.$ lit., ${ }^{8 d}$ $(3 R, 5 S, 9 S)-1[\alpha]_{\mathrm{D}}^{25}+34.30$ (c 1.02, hexane) $\} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.87\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CH}_{3}\right), 1.15-$ $1.96\left[16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8}\right], 2.07(1 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{m})$ and 2.46 $(1 \mathrm{H}, \mathrm{m})$. The spectroscopic data are identical with those reported. ${ }^{8 d}$ The second fraction gave $(+)$-indolizidine 195B 11 ($32 \mathrm{mg}, 8 \%$) as pale yellow oil, $[\alpha]_{\mathrm{D}}^{25}+101.19$ (c $0.28, \mathrm{MeOH}$) $\left\{\right.$ lit., $\left.{ }^{9}(3 S, 5 S, 9 S)-11[\alpha]_{\mathrm{D}}^{25}+98.0(c 0.30, \mathrm{MeOH})\right\} ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.10(3 \mathrm{H}, \mathrm{d}, J 6.1$, $\left.\mathrm{CH}_{3}\right), 0.95-1.94\left[16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8}\right], 2.33-2.55(2 \mathrm{H}, \mathrm{m})$ and $3.27(1 \mathrm{H}, \mathrm{m})$. The spectroscopic data are identical with those reported. ${ }^{9}$

References

1 (a) H. Takahashi, T. Tubuki and K. Higashiyama, Synthesis, 1992, 681; (b) H. Takahashi, B. C. Hsieh and K. Higashiyama, Chem. Pharm. Bull., 1990, 38, 2429; (c) H. Takahashi, H. Niwa and K. Higashiyama, Heterocycles, 1988, 27, 2099.

2 K. Higashiyama, H. Inoue and H. Takahashi, Tetrahedron Lett., 1992, 33, 235.
3 K. Higashiyama, K. Nakahata and H. Takahashi, Heterocycles, 1992, 33, 17.
4 (a) F. J. Ritter, I. E. M. Rotgans, E. Talman, P. E. J. Verwiel and F. Stein, Experientia, 1973, 29, 530; (b) F. J. Ritter and C. J. Persoons, Neth. J. Zool., 1975, 25, 261.
5 J. P. Edwards and D. B. Pinniger, Ann. Appl. Biol., 1978, 89, 395.
6 T. A. Hase, A. Ourila and C. Holmberg, J. Org. Chem., 1981, 46, 3137.
7 (a) C. Agami and T. Pizk, Tetrahedron, 1985, 41, 537; (b) A. H. Beckett and G. R. Jones, Tetrahedron, 1977, 33, 3313.
8 (a) C. W. Jefford, Q. Tang and A. Zaslona, J. Am. Chem. Soc., 1991, 113, 3513; (b) T. Momose, N. Toyooka, S. Seki and Y. Hrai, Chem. Pharm. Bull., 1990, 38, 2072; (c) M. Ito and C. Kibayashi, Tetrahedron Lett., 1990, 31, 5065; (d) N. Yamazaki and C. Kibayashi, Tetrahedron Lett., 1988, 29, 5767.
9 N. Yamazaki and C. Kibayashi, J. Am. Chem. Soc., 1989, 111, 1396.

Paper 3/06241D
Received 19th October 1993
Accepted 28th October 1993

